Study of Clear Sky Models for Singapore

Soumyabrata Dev1, Shilpa Manandhar2 *, Yee Hui Lee3, and Stefan Winkler4 **

150 Nanyang Avenue, School of Electrical and Electronic Engineering
Nanyang Technological University Singapore, Singapore 639798
soumyabr001@e.ntu.edu.sg, Phone: +65 6790 6527

250 Nanyang Avenue, School of Electrical and Electronic Engineering
Nanyang Technological University Singapore, Singapore 639798
shilpa005@e.ntu.edu.sg, Phone: +65 6790 6527

350 Nanyang Avenue, School of Electrical and Electronic Engineering
Nanyang Technological University Singapore, Singapore 639798
EYHLee@ntu.edu.sg, Phone: +65 6790 6188

41 Fusionopolis Way, Advanced Digital Sciences Center (ADSC)
Connexis North Tower #08-10, Singapore 138632
Stefan.Winkler@adsc.com.sg, Phone: +65 6591 7760

* Presenting author
** Corresponding author
Abstract

In this paper, we perform a comparative analysis of several popular clear-sky models, for a tropical region like Singapore. This is important, primarily in the field of solar energy generation and forecasting. We analyze and compare three popular clear-sky models – Bird model [1], Yang model [2] and CAMS McClear model [3]. We validate our results using actual solar irradiance measurements, and conclude the most reliable clear sky model for Singapore.

The total solar irradiance falling on the earth’s atmosphere, in the event of the clear day without any clouds, is referred as the clear-sky solar radiation. It is important, particularly in tropical countries like Singapore, that experiences most of the direct solar irradiance, and is useful for solar energy generation. Several theoretical models have been developed that estimates the clear sky global solar irradiance (GHI). Bird et al. uses results from radiative transfer codes, to estimate the total irradiance, by keeping the various atmospheric factors as constant throughout the year. Recently, Yang et al. proposed an empirical regression model, that is specifically designed for Singapore. Also, the atmosphere service of Copernicus (CAMS) uses the recent measurement results of various aerosol properties and water vapor content, to provide reliable estimates of solar irradiance.

In this paper, we study these models for a specific location in Singapore (1.34°N, 103.68°E). Figure 1 shows the various models for a sample clear sky day of 7-April-2016, along with the actual solar irradiance measurements, recorded by the weather station at this location. We observe that, for this sample day, both Bird model and Yang model over-estimates the actual solar irradiance values. However, McClear model can better estimate the actual solar irradiance measurements.

In order to provide an objective evaluation of the various models, we compute the Pearson correlation co-efficient and Root Mean Square Error (RMSE) between the actual- and estimated-solar irradiance values. Table 1 shows the results for 7-April-2016. The McClear model has the least RMSE value, and highest correlation value amongst all the models.

Table 1: Evaluation of various clear sky models for the sample day in Singapore

<table>
<thead>
<tr>
<th>Model</th>
<th>Correlation</th>
<th>RMSE (W/m^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bird model</td>
<td>0.97</td>
<td>114.84</td>
</tr>
<tr>
<td>McClear model</td>
<td>0.99</td>
<td>41.04</td>
</tr>
<tr>
<td>Yang model</td>
<td>0.99</td>
<td>66.48</td>
</tr>
</tbody>
</table>

In the extended version of this paper, we will perform our analysis for a larger statistical duration. We will record all the clear sky days in a single year, and estimate the best model amongst all benchmarking methods.

REFERENCES

The source codes of these models will be made available online in the final version.